Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury.

نویسندگان

  • Min D Tang-Schomer
  • Victoria E Johnson
  • Peter W Baas
  • William Stewart
  • Douglas H Smith
چکیده

Due to their viscoelastic nature, white matter axons are susceptible to damage by high strain rates produced during traumatic brain injury (TBI). Indeed, diffuse axonal injury (DAI) is one of the most common features of TBI, characterized by the hallmark pathological profiles of axonal bulbs at disconnected terminal ends of axons and periodic swellings along axons, known as "varicosities." Although transport interruption underlies axonal bulb formation, it is unclear how varicosities arise, with multiple sites accumulating transported materials along one axon. Recently, axonal microtubules have been found to physically break during dynamic stretch injury of cortical axons in vitro. Here, the same in vitro model was used in parallel with histopathological analyses of human brains acquired acutely following TBI to examine the potential role of mechanical microtubule damage in varicosity formation post-trauma. Transmission electron microscopy (TEM) following in vitro stretch injury revealed periodic breaks of individual microtubules along axons that regionally corresponded with undulations in axon morphology. However, typically less than a third of microtubules were broken in any region of an axon. Within hours, these sites of microtubule breaks evolved into periodic swellings. This suggests axonal transport may be halted along one broken microtubule, yet can proceed through the same region via other intact microtubules. Similar axonal undulations and varicosities were observed following TBI in humans, suggesting primary microtubule failure may also be a feature of DAI. These data indicate a novel mechanism of mechanical microtubule damage leading to partial transport interruption and varicosity formation in traumatic axonal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarity of varicosity initiation in central neuron mechanosensation

Little is known about mechanical regulation of morphological and functional polarity of central neurons. In this study, we report that mechanical stress specifically induces varicosities in the axons but not the dendrites of central neurons by activating TRPV4, a Ca2+/Na+-permeable mechanosensitive channel. This process is unexpectedly rapid and reversible, consistent with the formation of axon...

متن کامل

Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration.

Little is known about which components of the axonal cytoskeleton might break during rapid mechanical deformation, such as occurs in traumatic brain injury. Here, we micropatterned neuronal cell cultures on silicone membranes to induce dynamic stretch exclusively of axon fascicles. After stretch, undulating distortions formed along the axons that gradually relaxed back to a straight orientation...

متن کامل

Diffuse Axonal Injury in Head Trauma

Background: Diffuse axonal injury (DAI) is one of the most common and important pathologic features of traumatic brain injury (TBI). The susceptibility of axons to mechanical injury appears to be due to both their viscoelastic properties and their high organization in white matter tracts. Although axons are supple under normal conditions, they become brittle when exposed to rapid deformations a...

متن کامل

Administration of COG1410 reduces axonal amyloid precursor protein immunoreactivity and microglial activation after controlled cortical impact in mice.

Traumatic axonal injury (TAI) accounts for at least 35% of the morbidity and mortality in traumatic brain injury (TBI) patients without space-occupying lesions. It is also believed to be a key determinant of adverse outcomes such as cognitive dysfunction across the spectrum of TBI severity. Previous studies have shown that COG1410, a synthetic peptide derived from the apolipoprotein E (apoE) re...

متن کامل

Computational modeling of axonal microtubule bundles under tension.

Microtubule bundles cross-linked by tau protein serve a variety of neurological functions including maintaining mechanical integrity of the axon, promoting axonal growth, and facilitating cargo transport. It has been observed that axonal damage in traumatic brain injury leads to bundle disorientation, loss of axonal viability, and cognitive impairment. This study investigates the initial mechan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 233 1  شماره 

صفحات  -

تاریخ انتشار 2012